Formation of η^6 -Pyridine Complexes of Molybdenum(0) by a σ to π Rearrangement in Mo(N₂)₂(NC₅H₄-4-R)(PMePh₂)₃, R=H, Me

Robert H. Morris* and Joel M. Ressner

Scarborough College and the Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 1A1

The new complexes *trans,mer*-Mo(N₂)₂(NC₅H₄-4-R)(PMePh₂)₃, R=H, Me lose dinitrogen *in vacuo* at 25 °C in arene solvents to give Mo(η^{6} -NC₅H₄R)(PMePh₂)₃, the first stable η^{6} -pyridine complexes of molybdenum.

Pyridine readily forms σ -bonded complexes of zerovalent group 6 metals such as M(CO)₃(NC₅H₅)₈, M=Cr, Mo, and W, but the only π -complex so far reported is Cr(η^6 -NC₅H₅)-(PF₃)₃.^{1,2} We have found that the electron-rich fragment Mo(PMePh₂)₃ generated by magnesium reduction of solutions of MoCl₅ and PMePh₂ or by decomposition *in vacuo* of *trans*-Mo(N₂)₂(PMePh₂)₄ (1) has a high affinity for six-electron π ligands³ and as reported here allows the stabilization of the η^6 -pyridine ligand on molybdenum.

The precursors to the π -complexes are the new bis-dinitrogen compounds *trans,mer*-Mo(N_2)₂(L)(PMePh₂)₃ (2a) and (2b) which form rapidly as in equilibrium (1). The equilibrium constants from ³¹P n.m.r. studies of tetrahydrofuran (THF) solutions at 30 °C are 4 for (2a) and 7 for (2b) but only (1) can be precipitated from these mixtures. However the complexes of general formula (2) were isolated as purple solids; (2a), 50%, (2b), 30% yield, contaminated with (1) (5-10%) by stirring a suspension of the dinitrogen complex (1) with a five-fold excess of ligand L in pentane under N₂ at 25 °C for 24 h. Complexes containing the nitrogen donors N-methylimidazole and 3-picoline can also be isolated. THF solutions of (2) which are stable under N_2 for one week at 25 °C gave one i.r. band due to trans-dinitrogen ligands at 1914 cm⁻¹ for both complexes and ³¹P n.m.r. resonances consistent with merphosphine ligands (Table 1). Similar complexes of tungsten have been prepared.⁴ Reaction (1) is a rare example of a ligand substitution reaction in a molybdenum dinitrogen complex where the dinitrogen ligands are retained.5

Purple benzene or toluene solutions of the dinitrogen complexes (2) are unstable *in vacuo* at 25 °C (reaction 2) and during 78 h they turned brown and deposited red-brown precipitates. Recrystallization of the precipitates from THF-MeOH gave thermally stable, slightly oxygen sensitive red crystals of the

π-complexes Mo(η⁶-NC₅H₄-4-R)(PMePh₂)₃, (**3a**) (40%) and (**3b**) (40%). The complexes were analytically pure and displayed single peaks in their ³¹P n.m.r. spectra (Table 1) with chemical shifts near to the value of 33.9 p.p.m. observed for the phosphorus atoms σ-bonded to the molybdenum in Mo(η⁶-C₆H₅PMePh)(PMePh₂)₃.³ The proton resonances of the π-pyridine ligands in compounds (**3**) were shifted upfield by 1.9 -2.5 p.p.m. from corresponding resonances of the σ-bonded ligands in (**2**) (Table 1).

Resonances due to (3) were the only product peaks observable in the ³¹P spectra of solutions from reaction (2) even though small amounts of a brown, unidentified material were formed as a side product that lowers the yield. There was no evidence for π -complexation of the arene solvents in reaction (2) to give known η^6 -benzene or toluene complexes⁶ and this suggests that the pyridine ligands remain co-ordinated throughout the reactions. Reaction (2) represents a lower temperature route to π -heterocycle complexes than similar reactions that involve the loss of two carbonyl ligands from complexes containing η^1 -heterobenzenes bonded to Mo(CO)₅^{7,8} or the η^1 -pyrrolyl ligand in Fe(η^{5} -C₅H₅)(η^{1} -NC₄H₄)(CO)₂.⁹ The facile σ to π rearrangement of complexes (2) is explained by the lability of the dinitrogen ligands and by the weakness of the σ -bond between the nitrogen donor and the electron rich molybdenum centre.¹⁰ Chromium carbonyls form stable σ -bonds with pyridine so that π -complexes are only obtained when the pyridine ligands are substituted at the 2 and/or 6 positions to hinder σ -bonding with the metal.^{11–13}

Table 1.	³¹ Pa and	H ^b N.m.r.	data for th	e pyridine	complexes.
THOID TI	h und	** *******	uutu iot tii		001101010100

Complex	δ(³¹ P) /p.p.m.	$J^2_{ m P-P} / m Hz$	ortho	$\delta(^{1}H)$ meta	para
(2a)	$\frac{26.0 \text{ d}}{36.5 \text{ t}}$	9.8	8.14 d J 6 Hz	5.74 t J 6 Hz	6.25 t J 6 Hz
(3a) (2b)	32.9 s 26.0 d	9.8	5.60 b 8.03 d	3.44 b 5.63 d	4.39 b (1.56)°
(3b)	37.0 t ∫ 33.3 s	2.0	J 6 Hz 5.46 b	J6Hz 3.73b	(1.38)°

^a Solvent for (2): THF; solvent for (3): $C_{6}H_{6}$; referenced to 85% $H_{3}PO_{4}$; s = singlet, d = doublet, t = triplet, b = broad. ^b In $C_{6}D_{6}$ vs. Me₄Si. Complexes (2) both gave P-Me doublets at δ 1.91, J 5 Hz, and virtual triplets at δ 1.68. Complexes (3) gave broad singlets at δ 1.68. ^c The picoline methyl resonance.

Phosphine substituted π -heterocycle complexes are known to be more thermally robust than carbonyl analogues.^{2,13} Complexes (3) were inert to arene exchange reactions at 90 °C. Substitution of a labile phosphine ligand in (3b) by t-butyl isonitrile occurred rapidly at 25 °C without loss of the π pyridine ligand. Further substitution reactions are being studied as well as reactions with hydrogen since π -pyridine complexes are being considered as models for intermediates in hydrodenitrogenation processes used for upgrading fuels.¹³

We have found that the dinitrogen complex (1) decomposes with loss of N₂ at 80 °C in toluene under Ar to give a mixture (³¹P n.m.r. evidence) containing Mo(η^{6} -C₆H₆PMePh)(PMePh₂)₃ (50%) along with other π -bonded arylphosphine species. Here again π -complexation of the arene ring of a σ -bonded ligand is favoured over that of the solvent. A pathway to solvent coordination does exist since the reaction of (1) with benzene is driven to precipitate the insoluble product Mo(η^{6} -C₆H₆)-(PMePh₂)₃.³

This work was supported by the Natural Sciences and Engineering Research Council of Canada and the Atkinson Charitable Foundation.

Received, 28th April 1983; Com. 531

References

- 1 R. Davis and L. A. P. Kane-Maguire in 'Comprehensive Organometallic Chemistry,' eds. G. Wilkinson, F. G. A. Stone, and E. W. Abel, Pergamon Press, Oxford, 1982, vol. 3, p. 1231.
- 2 P. L. Timms, Angew. Chem., Int. Ed. Engl., 1975, 14, 273.
- 3 H. Azizian, R. Luck, R. H. Morris, and H. Wong, J. Organomet. Chem., 1982, 238, C 24.
- 4 J. Chatt, A. J. Pearman, and R. L. Richards, J. Chem. Soc., Dalton Trans., 1977, 2139.
- 5 J. Chatt, J. R. Dilworth, and R. L. Richards, *Chem. Rev.*, 1978, 78, 589.
- 6 M. L. H. Green and W. E. Silverthorn, J. Chem. Soc., Dalton Trans., 1973, 301.
- 7 J. Deberitz and H. Noeth, Chem. Ber., 1973, 106, 2222.
- 8 A. J. Ashe, III, and J. C. Colburn, J. Am. Chem. Soc., 1977, 99, 8099.
- 9 K. K. Joshi, P. L. Pauson, A. R. Qazi, and W. H. Stubbs, J. Organomet. Chem., 1964, 1, 471.
- 10 T. Tatsumi, H. Tominaga, H. Hidai, and Y. Uchida, J. Organomet. Chem., 1980, 199, 63.
- 11 E. O. Fischer and K. Ofele, Chem. Ber., 1960, 93, 1156.
- 12 L. H. Simons, P. E. Riley, R. E. Davis, and J. J. Lagowski, J. Am. Chem. Soc., 1976, 98, 1044.
- 13 H. W. Choi and M. S. Sollberger, J. Organomet. Chem., 1983, 243, C39.